U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

LEVEL II BRIDGE SCOUR ANALYSIS FOR STRUCTURE 134014500200 ON ROUTE SC 145, CROSSING BIG BLACK CREEK IN CHESTERFIELD COUNTY, SOUTH CAROLINA

By Whitney Stringfield and Toby D. Feaster

Prepared in cooperation with the SOUTH CAROLINA DEPARTMENT OF TRANSPORTATION

Columbia, South Carolina 1994

UNIT ABBREVIATIONS

cubic foot per second	ft ³ /s
feet per second	ft/s
foot	ft
mile	mi
millimeter	mm
square foot	ft^2
square mile	mi^2

OTHER ABBREVIATIONS

downstream	D/S
upstream	U/S
flood plain	f/p
median diameter of bed material	D_{50}
Water-Surface Profile computation model	WSPRO
South Carolina Department of Transportation	SCDOT

In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-- a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

	L
•	Ц

Level II bridge scour analysis for structure 134014500200 on Route SC 145, crossing Big Black Creek in Chesterfield County, South Carolina

by Whitney J. Stringfield and Toby D. Feaster

This report provides the results of the detailed Level II analysis of scour potential at structure 134014500200 on Route SC 145, crossing Big Black Creek in Chesterfield County, South Carolina (figure 1 in pocket; figures 4-7). The site is located in the upper Coastal Plain physiographic province near the town of Chesterfield in the central part of Chesterfield County. The drainage area for the site is 57.1 mi², and is a predominantly rural drainage basin with little development in recent years. In the vicinity of the study site, the land is covered by moderate to dense woods consisting of hardwoods and pines with heavy undergrowth.

In the study area, Big Black Creek has a meandering channel with a slope of approximately 0.0011 ft/ft (5.81 ft/mi), an average channel top width of 41 ft and an average channel depth of 6.8 ft. The predominant channel bed material is medium sand (D_{50} is 0.49 mm) and the channel banks consist of a fine sand (D_{50} is 0.17 mm). In general, the banks are covered with woody vegetation and moderately thick undergrowth and were noted to be relatively stable at the time of the Level I and Level II site visits, February 12, 1991, and July 28 and August 3, 1993, respectively.

The Route SC 145 crossing of Big Black Creek is a 250-ft-long, two-lane bridge consisting of ten 25-ft concrete spans, supported by timber pile bents with spillthrough abutments. Both abutments are adequately protected by riprap. In this report, the words "right" and "left" refer to directions that would be reported by an observer facing downstream. Additional details describing conditions at the site are included in the Scour Report Summary.

Scour depths were computed using engineering judgement and the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993) and the Transportation Research Board Draft Paper, "Evaluating scour at bridges using WSPRO" (Arneson and others, 1992). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 through 4 and a graph of the scour depths is shown on figure 2.

·	
Pile penetration depths were obtained from the SCDOT bridge plans (file number 410-B). The minimum remaining pile penetration depths for the 100- and 500-year	
discharges are 8.5 and 7.9 ft, respectively. This occurs at bent 5.	
•	
	•
	Li.

Table 1. --Remaining pile/footing penetration at piers/bents for the 100-year discharge at structure 134014500200 on Route SC 145, crossing Big Black Creek in Chesterfield County, South Carolina

Remaining pile/footing penetration (feet)		12.5	9.6	12.1	10.2	13.4	8.5	11.7	6.11	12.3
Elevation of scour, USGS datum (feet)		85.7	84.8	85.4	85.1	6'98	81.6	85.9	86.3	86.6
Total ⁴ scour depth (feet)	second	3.8	3.9	3.8	3.8	1.9	1.9	2.8	2.7	2.7
Ground elevation at pier/bent, USGS datum (feet)	100-year discharge is 1,890 cubic feet per second	89.5	88.7	89.2	88.9	88.8	83.5	88.7	89.0	89.3
Pile tip/ footing elevation, USGS datum (feet)	discharge is 1,89	73.2	75.2	73.3	74.9	73.5	73.1	74.2	74.4	74.3
Pile tip/3 footing elevation, SCDOT datum (feet)	100-year	591.0	593.0	591.1	592.7	591.3	6:065	592.0	592.2	592.1
Station from ² left end of bridge (feet)		25	20	75	100	125	150	175	200	225
Pier/bent ¹ number		10	6	œ	7	9	5	4	က	2

¹ Pier/bent number corresponds to the South Carolina Department of Transportation (SCDOT) bridge plans.

² Stations are determined from left to right looking downstream.

³ Pile tip/footing elevations obtained from the SCDOT bridge plans (file number 410-B). The maximum elevation at each pier/bent is used.

⁴ Total scour depth is the sum of the contraction and pier /bent scour depths.

Table 2. --Remaining pile/footing penetration at piers/bents for the 500-year discharge at structure 134014500200 on Route SC 145, crossing Big Black Creek in Chesterfield County, South Carolina

1	1	1								
Remaining pile/footing penetration (feet)		10.9	8.1	10.5	9.8	12.8	7.9	10.4	10.5	10.9
Elevation of scour, USGS datum (feet)		84.1	83.3	83.8	83.5	86.3	81.0	84.6	84.9	85.2
Total 4 scour depth (feet)	r second	5.4	5.4	5.4	5.4	2.5	2.5	4.1	4.1	4.1
Ground elevation at pier/bent, USGS datum (feet)	500-year discharge is 2,600 cubic feet per second	89.5	88.7	89.2	88.9	88.8	83.5	88.7	89.0	89.3
Pile tip/ footing elevation, USGS datum (feet)	discharge is 2,6	73.2	75.2	73.3	74.9	73.5	73.1	. 74.2	74.4	74.3
Pile tip/ ³ footing elevation, SCDOT datum (feet)	500-year	591.0	593.0	591.1	592.7	591.3	590.9	592.0	592.2	592.1
Station from left end of bridge (feet)		25	50	75	100	125	150	175	200	225
Pier/bent ¹ number		10	6	&	7	9	5	4	e	2

¹ Pier/bent number corresponds to the South Carolina Department of Transportation (SCDOT) bridge plans.

² Stations are determined from left to right looking downstream.

³ Pile tip/footing elevations obtained from the SCDOT bridge plans (file number 410-B). The maximum elevation at each pier/bent is used.

Total scour depth is the sum of the contraction and pier/bent scour depths.

Table 3. --Cumulative scour depths at piers/bents for the 100-year discharge at structure 134014500200 on Route SC 145, crossing Big Black Creek in Chesterfield County, South Carolina

Pier/bent ¹ number	Station from ² left end of bridge (feet)	Contraction scour depth (feet)	Pier/bent scour depth without debris (feet)	Total ³ scour depth without debris (feet)
	100-year dischar	ge is 1,890 cubi	c feet per second	
10	25	2.3	1.5	3.8
9	50	2.3	1.6	3.9
8	75	2.3	1.5	3.8
7	100	2.3	1.5	3.8
6	125	04	1.9	1.9
5	150	04	1.9	1.9
4	175	1.2	1.6	2.8
3	200	1.2	1.5	2.7
2	225	1.2	1.5	2.7

¹ Pier/bent number corresponds to the South Carolina Department of Transportation bridge plans.

NOTE: The pier and contraction scour equations used in this scour analysis were those recommended in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

² Stations are determined from left to right looking downstream.

³ Total scour depth is the sum of the contraction and pier/bent scour depths.

⁴ The calculated contraction scour is a negative value, but was set equal to zero to reflect a more reasonable estimate of scour during peak flood conditions.

Table 4. -- Cumulative scour depths at piers/bents for the 500-year discharge at structure 134014500200 on Route SC 145, crossing Big Black Creek in Chesterfield County, South Carolina

Pier/bent ¹ number	Station from ² left end of bridge (feet)	Contraction scour depth (feet)	Pier/bent scour depth without debris (feet)	Total ³ scour depth without debris (feet)
	500-year dischar	rge is 2,600 cubi	c feet per second	
10	25	3.7	1.7	5.4
9	50	3.7	1.7	5.4
8	75	3.7	1.7	5.4
7	100	3.7	1.7	5.4
6	125	0.4	2.1	2.5
5	150	0.4	2.1	2.5
4	175	2.4	1.7	4.1 .
3	200	2.4	1.7	4.1
2	225	2.4	1.7	4.1

¹ Pier/bent number corresponds to the South Carolina Department of Transportation bridge plans.

NOTE: The pier and contraction scour equations used in this scour analysis were those recommended in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution.

² Stations are determined from left to right looking downstream.

³ Total scour depth is the sum of the contraction and pier/bent scour depths.

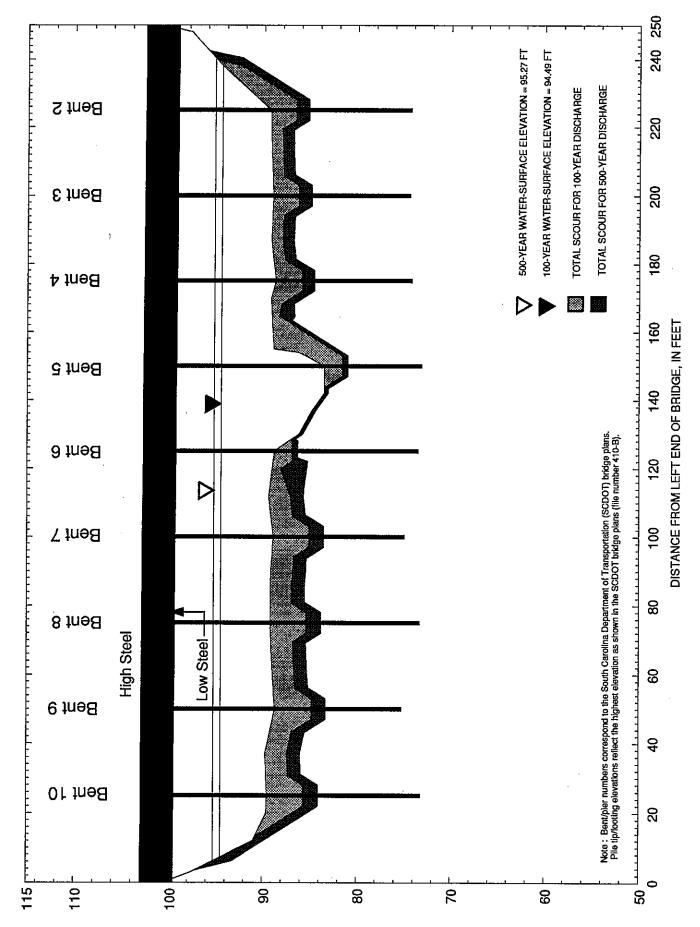


Figure 2.--Total scour depths for the 100- and 500-year discharges at structure 134014500200 on Route SC 145, crossing Big Black Creek in Chesterfield County, South Carolina...

[]
.[.]
:
<u> </u>
i T
IJ

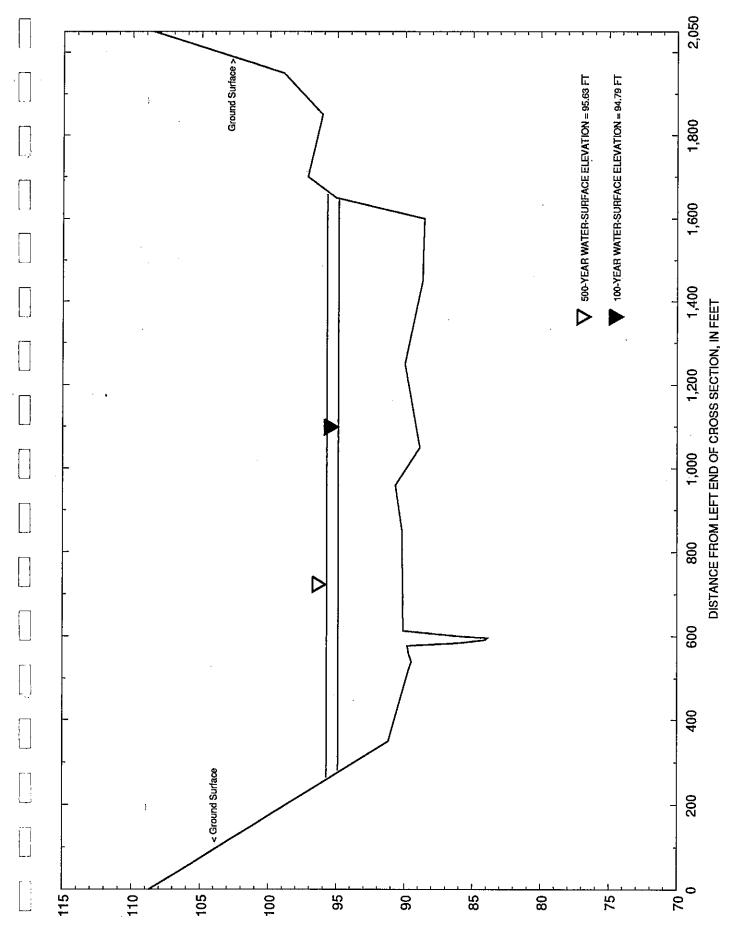


Figure 3.-- Approach cross section of structure 134014500200 on Route SC 145, crossing Big Black Creek in Chesterfield County, South Carolina.

	1.1
	IJ
•	
	П
·	•

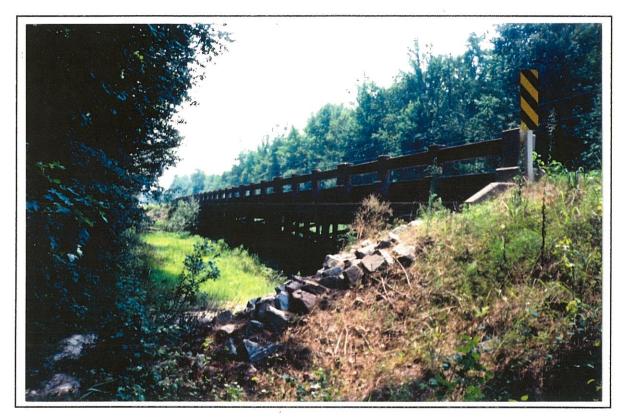


Figure 4.--Structure 134014500200 on Route SC 145, crossing Big Black Creek in Chesterfield County, South Carolina as viewed from the downstream left bank (July 28, 1993).

Figure 5.--Downstream channel as viewed from structure 134014500200 on Route SC 145, crossing Big Black Creek in Chesterfield County, South Carolina (February 12, 1991).

]
	[-]
]
]]
]
]
		}
		_

Figure 6.--Upstream channel as viewed from structure 134014500200 on Route SC 145, crossing Big Black Creek in Chesterfield County, South Carolina (February 12, 1991).

Figure 7.--Structure 134014500200 on Route SC 145, crossing Big Black Creek in Chesterfield County, South Carolina as viewed from the upstream left floodplain (February 12, 1991).

П	
П	
Li	

SELECTED REFERENCES Arcement, G.J., Jr., and Schneider, V.R., 1989, Guide for selecting Manning's roughness coefficients for natural channels and flood plains: U.S. Geological Survey Water-Supply Paper 2339, 38 p. Arneson, L. A., Shearman, J. O., Jones, J. S., 1992, Evaluating scour at bridges using WSPRO: Transportation Research Board Draft Paper, 40 p. Bohman, L. R., 1990, Determination of flood hydrographs for streams in South Carolina: Volume 1. Simulation of flood hydrographs for rural watersheds in South Carolina: U.S. Geological Survey Water-Resources Investigations Report 89-4087, 53 p. Bohman, L. R., 1992, Determination of flood hydrographs for streams in South Carolina: Volume 2. Estimation of peak-discharge frequency, runoff volumes, and flood hydrographs for urban watersheds: U.S. Geological Survey Water-Resources Investigations Report 92-4040, 79 p. Froehlich, D. C., 1989, Local scour at bridge abutments in Ports, M. A., ed., Hydraulic Engineering— Proceedings of the 1989 National Conference on Hydraulic Engineering: New York, American Society of Civil Engineers, p. 13-18. Guimaraes, W. B., and Bohman, L. R., 1991, Techniques for estimating magnitude and frequency of floods in South Carolina, 1988: U.S. Geological Survey Water-Resources Investigation Report, 91-4157, 174 p. Gunter, H.E., Mason, R.R., and Stamey, T.C., 1987, Magnitude and frequency of floods in rural and urban basins in North Carolina: U.S. Geological Survey Water-Resources Investigations Report, 87-4096, 54 p. Laursen, E. M., 1960, Scour at bridge crossings: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 86, no. HY2, p. 39-53. Laursen, E. M., 1963, An analysis of relief bridge scour: Journal of the Hydraulics Division, American Society of Civil Engineers, v. 89, no. HY3, p. 93-118. Richardson, E. V., Harrison, L. J., Richardson, J. R., and Davis, S. R., 1993, Evaluating scour at bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18, Publication FHWA-IP-90-017, 131 p. Richardson, E. V., Simons, D. B., and Julien, P. Y., 1990, Highways in the river environment: Federal Highway Administration Publication FHWA-HI-90-016. Richardson, E. V., Simons, D. B., Karaki, S., Mahmood, K., and Stevens, M. A., 1975, Highways in the river environment: hydraulic and environmental design considerations: Federal Highway Administration. Shearman, J. O., 1990, User's manual for WSPRO-a computer model for water surface profile computations: Federal Highway Administration Publication FHWA-IP-89-027, 187 p. Shearman, J. O., Kirby, W. H., Schneider, V. R., and Flippo, H. N., 1986, Bridge waterways analysis model; research report: Federal Highway Administration Publication FHWA-RD-86-108, 112 p.

U.S. Geological Survey, Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency, Bulletin 17B of the Hydrology Subcommittee, 190 p.

	ı	
	·	
•		
		П
		U U

SCOUR REPORT SUMMARY

nty Chester	134014500200	Stream	Big Black Creek				
ntyChester	field	Road	SC 145	District	4		
	Descrip	tion of Bride	<u>ge</u>				
Bridge length _	250 ft Bridge wi	idth <u>25</u>	ft Max s	span length _			
Alignment of br	idge to road (on curve o	r straight)	Straight				
Abutment type_	Spillthrough	Embankme	ent type	Bloping			
Riprap on abutn	ient? <u>Yes</u>	Date of inspe	ection 7-28	-1993			
Description of r	iprap Both abutment	ts are fully cove	ered by 12- to	18-inch grai	nite.		
	f cinder blocks are on tl						
diameter timber		Nine interior be	ins) caer co				
•	d to flood plain accordi		,				
							
Debris accumula	ation on bridge at time	of Level I or Le	evel II site vi	sit:			
Debris accumul	ation on bridge at time Date of inspection	•	channel	Percent			
Debris accumula	_	Percent of a	channel	Percent	vertically		
	Date of inspection	Percent of a blocked hori	channel	Percent blocked	vertically		
Level I Level II	Date of inspection 2-21-1991	Percent of a blocked hori	channel izontally	Percent blocked (vertically))		
Level I Level II Potential fo bridge.	Date of inspection 2-21-1991 7-28-1993	Percent of a blocked horion 0 0 high: fallen tree	channel izontally 	Percent blocked (((nnel, upstrea	m of the		

<u>Description of Flood Plain</u>

General top	ography Typical upper Coastal Plain topography								
Flood-plair	in conditions at bridge site: downstream (D/S), upstream (U/S)								
Date of ins									
D/S left:	Moderately thick hardwoods with heavy undergrowth of small trees								
D/S right:	Moderately thick hardwoods with heavy undergrowth of small trees								
U/S left:	Moderately thick hardwoods with heavy undergrowth of small trees								
U/S right:	ht: Moderately thick hardwoods with heavy undergrowth of small trees								
	Description of Channel								
Average top	p width 41 ft Average depth 6.8 ft								
Predomina	ant bed material Medium sand Bank material Fine sand								
Stream type	oe (straight, meandering, braided, swampy, channelized) Meandering								
Vegetative (cover on channel banks near bridge: Date of inspection 7-28-1993								
D/S left:	Moderately thick hardwoods with heavy undergrowth of small trees								
D/S right:	Moderately thick hardwoods with heavy undergrowth of small trees								
U/S left:	Moderately thick hardwoods with heavy undergrowth of small trees								
U/S right:	Moderately thick hardwoods with heavy undergrowth of small trees								
Do banks a	appear stable? Yes If not, describe location and type of instability as								
date of obs	servation.								
	•								
Describe an	ny obstructions in channel and date of observation. None observed								

Hydrology

Drainage area 57.1 mi ²							
Percentage of drainage area in physiograph	nic provinces:						
Physiographic province	Percent of drainage area						
upper Coastal Plain	100						
Is drainage area considered rural or urban?							
urbanization and potential for developmen	nt. The drainage area encompasses a						
predominantly rural area with little devel	opment in recent years.						
Is there a USGS gage on the stream of inter	est? Yes						
USGS gage descriptio	n Big Black Creek near McBee						
USGS gage number	02130900						
Gage drainage area	108;2						
Is there a lake/pond that will significantly	ajject ngarotozy/ngaraancs.						
If so, describe							
Calculate	ed Discharges						
Q100 $1,890$ ft^3/s	$Q500 \ \underline{2,600} \ ft^3/s$						
Method used to determine discharges A w	veighted 100- and 500-year discharge at						
	nting the log Pearson Type III and regression						
equation discharges. This weighted discharges							
	ion equation discharges at Route SC 145. For						
	4157, "Techniques for estimating magnitude						
and frequency of floods in South Carolina,							

<u>Brief Descripti</u>	on of the Water-S	urface Profile Mod	<u>el (WSPRO) Analysis</u>
Datum for WSPI	RO analysis (USGS sı	rvey, sea level, SCDOT	plans) USGS survey
Datum tie betwe	en USGS survey and	SCDOT plans Ad	ld 517.8 ft to USGS survey
datum to obtain	n the SCDOT plans' d	atum (file number 410-	В).
Description of re	eference marks used t	o determine USGS datu	m. RM 1 is a chiseled
	•		on = 100.00 ft) RM 2 is a
chiseled square	on the U/S right abu	tment headwall (surve	yed elevation = 99.69 ft).
	Cross Sections U	Jsed in WSPRO Anal	ysis
ross section ID	Section Reference Distance (SRD) in feet	**How cross section was developed	Comments
EXIT1	-290	2	Natural ground section
DSRD	-280	2	Old road bed section
USRD	-260	2	Old road bed section
EXIT	-250	1	Exit section
FULV	0	2	Full valley section
BRDG	0	1	U/S face of bridge
APPR	275	4	Approach section
			
			

^{*} For location of cross sections see topographic map included with report (figure 1).

For more detail on how cross sections were developed see WSPRO input file.

** Cross section development: 1) survey at SRD 2) shift of survey data to SRD 3) modification of survey data based on topographic map 4) synthesized by combining channel survey data and SCDOT road plans, file number 410-B.

Description of data and assumptions used in developing WSPRO model.

The hydraulics at Route SC 145 are influenced by an old road embankment located approximately 250 ft downstream of the downstream bridge face. Therefore, a cross section was surveyed along the toe and at the top of the old embankment. The toe survey was shifted downstream of the old embankment and used as the starting cross section (EXIT1) for the WSPRO model. The top of embankment survey was used to model the upstream (USRD) and downstream (DSRD) face of the old embankment. Additionally, the toe of embankment survey was used to model the exit and full-valley cross sections for the Route SC 145 bridge. Cross sections at the upstream and downstream faces of the bridge were directly surveyed and the more constricted (upstream) bridge face was used in the WSPRO model. The approach cross section was determined by superimposing a channel cross section, which was surveyed approximately 90 ft upstream of the upstream bridge face, onto a cross section obtained from the SCDOT road plans (file number 410-B). This cross section was shifted by the channel slope to the appropriate section reference distance (SRD) to represent the approach section required by WSPRO. The SRD at the downstream face of the bridge was set to zero.

Because the flood plain is relatively uniform downstream of the old road embankment, it was assumed that slope-conveyance methodology would be adequate for estimating the starting water-surface elevation for the water-surface profile computations.

Bridge Hydraulics

Average embankment elevation 99.6 ft

Average low steel elevation 99.5 ft

100-year discharge 1,890 ft³/s

Water-surface elevation at D/S bridge face 94.49 ft

Area of flow at D/S bridge face 1,295 ft²

Average velocity in bridge opening 1.46 ft/s

Maximum WSPRO tube velocity at bridge 2.19 ft/s

Water-surface elevation at Approach section with bridge $\frac{94.79}{}$ ft

Water-surface elevation at Approach section without bridge $\frac{94.56}{}$ ft

Amount of backwater caused by bridge $\frac{0.23}{}$ ft

500-year discharge 2,600 ft³/s

Water-surface elevation at D/S bridge face 95.27 ft

Area of flow at D/S bridge face 1,477 ft²

Average velocity in bridge opening 1.76 ft/s

Maximum WSPRO tube velocity at bridge 2.58 ft/s

Water-surface elevation at Approach section with bridge 95.63 ft

Water-surface elevation at Approach section without bridge 95.34 ft

Amount of backwater caused by bridge 0.29 ft

Scour

Describe any special assumptions or considerations made in bridge scour analysis.

Scour depths were computed using engineering judgement and the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993) and the Transportation Research Board Draft Paper, "Evaluating scour at bridges using WSPRO" (Arneson and others, 1992). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The results of the scour analysis are presented in tables 1 through 4 and a graph of the scour depths is shown on figure 2.

The local pier scour was determined using the Colorado State University pier scour equation (Richardson and others, 1993). Bents 7 through 10 are located on the left overbank and were analyzed using the maximum left overbank WSPRO tube velocity and the depth of flow at each bent. Bents 2 through 4 are located on the right overbank and were analyzed using the maximum right overbank WSPRO tube velocity and the depth of flow at each bent. Bent 6 is located near the top of the bank and was analyzed as if it was in the channel to account for the possibility of a shift in the channel during a flood. Bent 5 is located in the channel. Bents 5 and 6 were analyzed using 90 percent of the maximum WSPRO tube velocity and the maximum depth within the channel at the bridge. The maximum depth within the channel was used to account for possible changes in the thalweg during a flood.

This site is located in the upper Coastal Plain physiographic province where sandy soils and heavily vegetated flood plains will minimize sediment transport during floods. Additionally, a comparison of the velocities in the approach channel with the critical velocity at incipient motion indicates that clear-water scour conditions will dominate. Therefore, it was decided that clear-water scour would best represent the contraction scour processes at the bridge, and the potential contraction scour was determined using Larsen's clear-water contraction scour equation (Richardson and other, 1993).

The clear-water contraction scour equation indicates the deposition of sediment in the channel at the bridge during the 100-year flood. (See negative scour values determined in scour calculations included at the end of the report). However, it seems unreasonable to expect sediment deposition at the bridge during peak flood conditions. Therefore, the negative scour value were set equal to zero as reflected in table 3 and figure 2.

"NYO"

Channel surveys taken by USGS personnel 90 ft upstream of the upstream bridge face and at the upstream and downstream bridge faces on July 28, 1993 were compared with the channel shown on the SCDOT road plans (file number 410-B) dated July 1935. From this comparison, it appears that the channel bed has degraded approximately 2 ft. This should be taken into consideration when evaluating the scour potential at this site. However, in order to verify the long-term channel degradation, further investigation would be necessary.

No abutment scour computations were made because the abutments are protected by riprap.

WSPRO INPUT FILE

```
T1
           Structure 134014500200, (250 ft bridge)
 T2
           Big Black Creek at SC 145, Chesterfield County
 Т3
           WJS 9-26-1994, file: wspro.black
            Weighted regression relations used to determine discharges
 *
            Q100
                    Q500
 Q
            1890
                    2600
 *
 *
SK
            0.0011 0.0011
 ķ
 *
*
            SURV was surveyed at the EXIT section of SC 145 by the USGS.
            The EXIT section survey is along the toe of an old road bed
*
            downstream. Right flood plain cross section was extended by
            data from topographic map.
*
XT
     SURV
           -250 .0011
GR
             0 101.7 22 100.8 72 99.2 136 96.8 193 94.8 220 93.6 285 91.5
           372 91.1 378 85.4 389 82.3 396 82.2 405 82.7 414 85.6 419 90.1
GR
GR
           522 92.5 1200 92.5 1220 102.0
*
XS
     EXIT1 -290
GT
N
            0.14
                  0.08 0.20
SA
                372
                       419
*
              DSRD was surveyed at the EXIT section of SC 145. This section
              is along the top of an old road bed downstream.
XS
     DSRD
            -280 .0011
GR
             0 101.7 22 100.8 72 99.2 136 98.1 193 96.2 220 95.5 285 94.2
GR
           372 91.1 378 85.4 389 82.3 396 82.2 405 82.7 414 85.6 419 92.5
           522 92.9 658 92.7 768 93.3 915 94.1 1003 96.0 1035 98.1
GR
           0.12
N
                   0.08
                          0.04
     1
SA
               372
                       419
*
*
XS
     USRD
             -260
XS
     EXIT
             -250
GT
N
              0.14
                       0.08
                               0.20
SA
                   372
                         419
*
XS
     FULV
GT
```

WSPRO INPUT FILE -- Continued

```
U/S bridge face more constricted
     BRDG
BR
             0 99.5
GR
              0 99.5
                     1.1 99.5 3 97.6 12 91.0 20 89.6 25 89.5
GR
             37 89.7 50 88.7 62 89.0 75 89.2 87 89.2 100 88.9
            112 89.4 125 88.8 130 86.2 137 84.8 142 83.5 150 83.5
GR
GR
            154 86.2 155 88.9 170 89.2 175 88.7 187 89.2 200 89.0
            212 89.2 225 89.3 237 94.1 248 97.8 249 99.1 250 99.1
GR
GR
             0 99.5
N
            0.045 0.045 0.045
SA
                 125 155
            3 25 1.5 99.6
CD
PW 1
            83.5 1 88.7 1 88.7 2 88.7 2 88.7 3 88.8 3 88.8 4 88.9 4
PW
            88.9 5 89.0 5 89.0 6 89.2 6 89.2 7 89.3 7 89.3 8 89.5 8
PW
            89.5 9 99.5 9 99.5 0
*
             The KD card was used to shift the KQ section to include the main
             channel of the cross-section
*
KD
                     458 697
*
*
*
ΧT
     SURV2
              12 .0011
             0 108.7 350 91.2 520 89.7 539 89.5 559 89.7 577 89.8 583 86.2
            585 85.7 591 84.1 595 83.9 600 86.1 612 90.1 850 90.2
GR
            950 90.7 1050 88.9 1250 90.0 1450 88.7 1600 88.6 1650 95.1
GR
GR
            1700 97.2 1850 96.1 1950 99.0 2050 108.5
*
*
*
            SRD OF APPROACH ( 250 \text{ FT} + 25 \text{ FT} ) = 275 \text{ FT}
AS
     APPR
            275
GT
*
             (1tb of appr) 577 - (1tb of bridge) 125 = BP
BP
             452
N
              0.18 0.08 0.18
SA
                 577 612
*
HP 1 BRDG 94.49 0 94.49 1890
HP 2 BRDG 94.50 0 94.50 1890
HP 1 APPR 94.79 0 94.79 1890
HP 2 APPR 94.79 0 94.79 1890
*
HP 1 BRDG 95.27 0 95.27 2600
HP 2 BRDG 95.28 0 95.28 2600
HP 1 APPR 95.63 0 95.63 2600
HP 2 APPR 95.63 0 95.63 2600
*
EX
ER
```

WSPRO OUTPUT

	WSPRO V042094	FEDERAL H MODEL			- U. S. GEO PROFILE CO		VEY
	Big WJS	ructure 13401 Black Creek 9-26-1994, *** RUN DATE	at SC 145, file: wspro	Chesterfie	ld County		.
		ECTION PROPE				; SRD =	0.
	WSEL	SA# AREA			TP ALPH	LEW REW	QCR
			58396				7687
			38755				4932
C_1	94.49	1295	39378 136529		37 1.08	7 239	5211 16748
		2430	100013	201 2		7 230	10/40
		Y DISTRIBUTI				SRD =	0.
П	WS , 94.	EL LEW 50 7.2	REW A1 238,2 129	REA 7.7 136906	K Q . 1890.	VEL 1.46	
	'						
	X STA.				55.4		
П	A(I)				68.7		
	V(I)	1.11	1.28	1.42	1.38	1.41	•
	X STA.	80.4	93.2	105.3	118.3	129.3	135 0
	A(I)	68.2	66.5	68.1	66.2	50.0	
	V(I)	1.39	1.42	1.39	1.43	1.89	
	X STA.	135 0	130 0	143 0	147.8	150 4	164 3
	A(I)		43,2		48.9		
	V(I)				1.93	1.31	
П	X STA.	164.3	176.7	189.0	201.4	214.8	238.2
{ }	A(I)				72.0	87.2	
_ 	V(I)		1.41		1.31		

WSPRO V042094	WSPRO FEDERAL HIGHWAY ADMINISTRATION - U. S. GEOLOGICAL SURVEY V042094 MODEL FOR WATER-SURFACE PROFILE COMPUTATIONS									
Biç WJ:	ructure 1340145 g Black Creek a g 9-26-1994, fi *** RUN DATE & SECTION PROPERT	at SC 145, Ch le: wspro.bl TIME: 10-06	esterfield ack -94 10:27	County	RD = 275.					
	1 1074 2 280 3 4962	21137 19966 116890 1	293 293 35 37 033 1034		REW QCR 11671 4495 61707 1645 58101					
WS	TY DISTRIBUTION SEL LEW .79 284.0 16	REW AREA	ĸ	Q VI	SL.					
X STA. A(I) V(I)	284.0 4 473.5 0.20	47.7 52 363.1 0.26	8.1 58 282.4 0.33	3.7 593. 97.0 0.97	.7 606.2 106.8 0.89					
A(I)	606.2 6 317.2 0.30	360.8	358.8	373.1	368.1					
X STA. A(I) · V(I)	1019.2 10 310.2 0.30	76.4 113 ³ 322.2 0.29	327.4	346.2	332.5					
X STA. A(I) V(I)	1346.5 14 312.8 0.30	05.3 145 302.1 0.31	295.4	310.6	356.3					

	WSPRO V04209	FEI 4	DERAL HI MODEL	IGHWAY FOR	ADMI WATE	NISTRA R-SURF	TION ACE	- U. S PROFII	. GEC E CC	LOGICA MPUTAT	L SUR	VEY
		Structure Big Black WJS 9-26- *** RU OSS-SECTION	Creek 1994, i N DATE	at SC File: v & TIM	145, wspro E: 10	Chest black.	erfie	ld Cou 27	_	; SRD	=	0.
	W	SEL SA# 1 2 3	AREA 692 306 478	73 44	1242	119 30	1.	20 34	PH	LEW	REW	QCR 9483 5556 6417
	95	.27							06	6	240	
	VE	LOCITY DIST										0.
П		WSEL 95.28	LEW 6.2	REW 240.5	A) 147	REA 9.2 10	1 .67666	. 2	Ω 600.	VEL 1.76		
	X STA. A(I) . V(I)		99.0 1.31	28.1	80.1 1.62	42.2	75.3 1.73	54.0	75.2 1.73	65.9	76.6 1.70	
	X STA. A(I) V(I)		4 76.8 1.69		73.9		76.7		76.3	127.3	60.2	•
	X STA. A(I) V(I)		0 54.9 2.37		52.0		50.4		59.6		81.4	•
	X STA. A(I) V(I)		75.7		76.5		76.5		80.1	1	101.9	

•									
WSPRO	FE		HWAY ADMIN						Y
V042094		MODEL	FOR WATER	-SURFAC	E PRO	FILE CO	MPUTAT	IONS	
S	Structure	= 13401450	00200, (25	0 ft br	idge)				
F	Big Black	Creek at	SC 145,	Chester					
V			le: wspro.						
CROSS			TIME: 10- IES: ISEQ				. CDD		275
CROBE	DECTIO	· ENCERNI.	mo. romo	- 1,	SECID	- AFFR	, akn	_	2/5.
WSEI			K				LEW	REW	QCR
			28978						15591
	2	309	23581	35	37				5221
95.63	ა }	3034 7470	152041 204600	1380	1044	1 66	267	1656	78260 76425
.55.05	•	1410	.204000	1303	1391	1.00	207	1050	70425
	TOV 5700	DIDITAL	7070				000	0.00	
AETOC	TII DIS.	KIBUTION	: ISEQ =	/; SE	CID = I	APPR ;	SKD =	275	•
	WSEL	LEW	REW AR	EA	ĸ	Q	VEL		
9	5.63	267.2 165	REW AR 55.7 7470	.5 204	600.	2600.	0.35		
V Cmx	267	2 45) E 0	E10 0	F 0.4		FA2 F	_	A. D. A.
			35.2 436.0						07.3
			0.30						
X STA.	607.	3 67	79.5	759.3	839	9.2	925.4	i 0	08.9
A(I)	•	380.9	414.5 0.31	41	.2.8	428.8	4	120.3	
V(I)		0.34	0.31	0	.31	0.30		0.31	
X STA.	1008.	9 106	59.3 1	129.6	119	5 . 1	1267.9	13	37 2
A(I)			372.3						~ / 1 44
V(I)		0.35	0.35	0	.34	0.33	`	0.33	•
	1337.		7.9 1						
A(I)			360.2						•
V(I)		0.35	0.36	U	.31	0.36		0.29	

	WSPRO V042094	FEDE	RAL HIG MODEL	HWAY ADM FOR WAT	INISTR ER-SUR	ATION FACE	- U. S. PROFILE	GEOLOGICAL COMPUTATI	SURVE	Y
	Bi	g Black S 9-26-1	Creek a 994, fi	00200, (t SC 145 le: wspr TIME: 1	, Ches	terfie k	ld Count	У		
	XSID:CODE SRD		LEW REW	AREA K		HF HO	EGL ERR		Q VEL	WSEL
	EXIT1:XS -289	***** ****	209 1203	2168 56950		***** ****	94.11	87.67 0.25	1890 0.87	94.04
	DSRD :XS -279	10 10	289 905	1045 53722	0.08 1.59		94.13 0.00	****** 0.31	1890 1.81	94.05
	USRD :XS -259	20 20	289 906	1048 53859	0.08 1.59		94.15 0.00	****** 0.31	1890 1.80	94.07
	EXIT :XS -249	10 10	209 1203	2176 57151	0.07 5.87		94.17 0.00	****** 0.25	1890 0.87	94.10
П	FULV :FV 0 <<	250 250 <- <the a<="" td=""><td>209 1203 BOVE RE</td><td>2181 57281</td><td>0.07 5.87</td><td>0.00</td><td>0.01</td><td>****** 0.25 NSTRICTED)</td><td>1890</td><td>94.38</td></the>	209 1203 BOVE RE	2181 57281	0.07 5.87	0.00	0.01	****** 0.25 NSTRICTED)	1890	94.38
	135 CON				F RECO	MMENDE		1.	FLOW>	>>>>
	APPR :AS 275	275 275	289 1644	6008 146179	0.00	0.12	94.57 0.00	****** 0 04	n 31	94.56
	**							NSTRICTED) OW FOLLOW>		>> <u>></u> >
	XSID: CODE SRD	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL
	BRDG :BR 0	250 250	7 238	1295 136403	0.06 1.76	0.38	94.54 0.00	90.33 0.14	1890 1.46	94.49
	TYPE P	PCD FLOW	C 0.754	P/A 0.042	LSEI 99.50	L BL!	EN XLAI ** ****	B XRAB * *****		
	XSID:CODE SRD	SRDL FLEN		AREA K				CRWS FR#	Q VEL	WSEL
	APPR :AS 275	250 437	284 1645	6314 157907	0.00 1.77	0.24 0.01	94.79 -0.01	90.38 0.03	1890 0.30	94.79
	M(G) 0.830	M(K) 0.740	Κζ 41183.	2 XLKQ 458.	XRKQ 697.		EL			
	1		<<< <e< td=""><td>END OF BR</td><td>IDGE C</td><td>OMPUTA</td><td>TIONS>>></td><td>>>></td><td></td><td></td></e<>	END OF BR	IDGE C	OMPUTA	TIONS>>>	>>>		

WSPR			RAL HIGH MODEL H					GEOLOGICAL COMPUTATI			
•	Bi	g Black (S 9-26-19	Creek at	00200, (2 : SC 145, Le: wspro	Chest blacl.	terfie k	ld County	У			
XSII	D:CODE SRD	*** RUN SRDL FLEN	LEW REW	TIME: 10 AREA K	VHD ALPH	4 10: HF HO	27 EGL ERR	CRWS FR#	Q VEL	WSEL	
EXIT	1:XS		191	2957 78345	0.06	****			2600 0.88	94.83	
DSRD	:XS -279	10 10	253 950	1571 89042	0.06 1.34	0.01 0.00	94.90 0.00	***** 0.23	2600 1.66	94.85	
USRD	:XS -259	20 20	253 949	1567 88793	0.06 1.34	0.02 0.00	94.92 0.00	****** 0.23	2600 1.66	94.86	
EXIT	:XS -249	10 10	191 1205	2952 78185	0.07 5.39	0.01 0.00		****** 0.21	2600 0.88	94.87	
FULV	0	250 250 <<< <the #<="" td=""><td>191 1205 ABOVE RE</td><td>2960 78412 SULTS RE</td><td>0.06 5.39 FLECT</td><td>0.28 0.00 "NORM</td><td>0.01</td><td>****** 0.21 ONSTRICTED)</td><td>0.88</td><td>95.15 >>>></td><td></td></the>	191 1205 ABOVE RE	2960 78412 SULTS RE	0.06 5.39 FLECT	0.28 0.00 "NORM	0.01	****** 0.21 ONSTRICTED)	0.88	95.15 >>>>	
===]	L35 CON	VEYANCE	RATIO C	OUTSIDE O "APPR			ED LIMITS			:	
APPR	275	275 275 344 THR 10	273 1650	7071 188212	0.00 1.69	0.13 0.00	0.00	****** 0.04 ONSTRICTED)	0.37	95.34	
	•						·	LOW FOLLOW>			
XSII	SRD	SRDL FLEN	LEW REW	AREA K	VHD ALPH	HF HO	EGL ERR	CRWS FR#	Q VEL	WSEL	
BRDG	0	250	240	167230	1.76	0.00	0.00	90.73 0.16		95.27	
VOTE	3.		0.754	0.042	99.5	0 ****	*** ****	AB XRAB			
	SRD	FLEN	REW	AREA K	ALPH	НО	ERR	FR#		WSEL 95.63	
	275	431 M(K)	1656	204758 Q XLKQ	1.66	0.01	-0.01	90.87 0.03	0.35		
			51771	. 458. END OF B	697	. 9	5.59	·>>>			

PIER SCOUR COMPUTATIONS

FOR

BIG BLACK CREEK AT SC 145 STRUCTURE # 134014500200 100-YEAR SCOUR, WJS, scour.1, 10-6-1994

	HYDRA	ULIC VARI	ABLES USE	D IN CSU F	EQUATION	•
PIER NUMBER	10	9	8	7		
PIER STATION (FT)	25	50	75	100		
LOCATION OF PIER	lfp	lfp	lfp	lfp		
Y1: DEPTH (FT)						
V1: VEL. (FPS)						
a: PIER WIDTH (FT)				1.0		
L: PIER LENGTH (FT)	5.0	5.0	5.0	5.0		
PIER SHAPE	3	3	3	3		•
ATTACK ANGLE	0	0	0	0	· ·	•
K1 (SHAPE COEF.)	1.00	1.00	1.00	1.00		
K2 (ANGLE COEF.)	1.00	1.00	1.00	1.00		•
FROUDE NO.	0.11	0.11	0.11	0.11		•
	COMPUTE	D SCOUR DI	EPTHS USI	NG CSU EQ	UATION	
SCOUR DEPTH (FT)	1.38	1.41	1.39	1.40		•
MAX SCOUR DEPTH (FT)	1.52	1.55	1.53	1.54	•	•
MAX SCOUR DEPTH (FT)	1.52	1.55	1.53	1.54	·	
MAX SCOUR DEPTH (FT)	1.52	1.55	1.53	1.54		
MAX SCOUR DEPTH (FT)	1.52	1.55	1.53	1.54	·	——————————————————————————————————————
MAX SCOUR DEPTH (FT)			======================================		SU EQUATION	
PIER NUMBER	HY 6	DRAULIC V.	ARIABLES		SU EQUATION	
PIER NUMBER	HY 6 125	DRAULIC V. 5 150	ARIABLES 4 175	USED IN C	2 225	
PIER NUMBER	HY 6 125	DRAULIC V. 5 150	ARIABLES 4 175	USED IN C	2 225	
PIER NUMBER PIER STATION (FT) LOCATION OF PIER (1: DEPTH (FT)	6 125 1tb 11.0	DRAULIC V. 5 150 mcm 11.0	ARIABLES 4 175 rfp 5.8	USED IN C	2 225 rfp 5.2	
PIER NUMBER PIER STATION (FT) LOCATION OF PIER (1: DEPTH (FT) /1: VEL. (FPS)	6 125 1tb 11.0	DRAULIC V. 5 150 mcm 11.0	ARIABLES 4 175 rfp 5.8	USED IN C	2 225 rfp 5.2	
PIER NUMBER PIER STATION (FT) LOCATION OF PIER (1: DEPTH (FT) V1: VEL. (FPS)	6 125 1tb 11.0 2.0	DRAULIC V. 5 150 mcm 11.0 2.0	ARIABLES 4 175 rfp 5.8	USED IN C	2 225 rfp 5.2	
PIER NUMBER PIER STATION (FT) LOCATION OF PIER (1: DEPTH (FT) V1: VEL. (FPS)	6 125 1tb 11.0 2.0	DRAULIC V. 5 150 mcm 11.0 2.0	ARIABLES 4 175 rfp 5.8	USED IN C	2 225 rfp 5.2	
PIER NUMBER PIER STATION (FT) LOCATION OF PIER (1: DEPTH (FT) V1: VEL. (FPS)	6 125 1tb 11.0 2.0	DRAULIC V. 5 150 mcm 11.0 2.0 1.0 5.0	4 175 rfp 5.8 1.5 1.0	USED IN C 3 200 rfp 5.4 1.5 1.0 5.0	2 225 rfp 5.2 1.5 1.0 5.0	
PIER NUMBER PIER STATION (FT) COCATION OF PIER (1: DEPTH (FT) /1: VEL. (FPS) a: PIER WIDTH (FT) C: PIER LENGTH (FT) PIER SHAPE	6 125 1tb 11.0 2.0 1.0 5.0	DRAULIC V. 5 150 mcm 11.0 2.0 1.0 5.0 3	4 175 rfp 5.8 1.5 1.0 5.0	USED IN C 3 200 rfp 5.4 1.5 1.0 5.0 3	2 225 rfp 5.2 1.5 1.0 5.0	
A: PIER WIDTH (FT) L: PIER LENGTH (FT) PIER SHAPE ATTACK ANGLE	6 125 1tb 11.0 2.0 1.0 5.0 3	DRAULIC V. 5 150 mcm 11.0 2.0 1.0 5.0 3	ARIABLES 4 175 rfp 5.8 1.5 1.0 5.0 3 0	USED IN C 3 200 rfp 5.4 1.5 1.0 5.0 3 0	2 225 rfp 5.2 1.5 1.0 5.0 3	
PIER NUMBER PIER STATION (FT) COCATION OF PIER (1: DEPTH (FT) /1: VEL. (FPS) a: PIER WIDTH (FT) C: PIER LENGTH (FT) PIER SHAPE ATTACK ANGLE (1 (SHAPE COEF.)	6 125 1tb 11.0 2.0 1.0 5.0 3 0	DRAULIC V. 5 150 mcm 11.0 2.0 1.0 5.0 3 0 1.00	ARIABLES 4 175 rfp 5.8 1.5 1.0 5.0 3 0 1.00	USED IN C 3 200 rfp 5.4 1.5 1.0 5.0 3 0 1.00	2 225 rfp 5.2 1.5 1.0 5.0 3 0	
PIER NUMBER PIER STATION (FT) COCATION OF PIER (1: DEPTH (FT) /1: VEL. (FPS) A: PIER WIDTH (FT) C: PIER LENGTH (FT) PIER SHAPE ATTACK ANGLE	6 125 1tb 11.0 2.0 1.0 5.0 3 0	DRAULIC V. 5 150 mcm 11.0 2.0 1.0 5.0 3 0 1.00 1.00	ARIABLES 4 175 rfp 5.8 1.5 1.0 5.0 3 0 1.00 1.00	USED IN C 3 200 rfp 5.4 1.5 1.0 5.0 3 0 1.00	2 225 rfp 5.2 1.5 1.0 5.0 3 0 1.00 1.00	
PIER NUMBER PIER STATION (FT) LOCATION OF PIER L: DEPTH (FT) L: VEL. (FPS) L: PIER WIDTH (FT) L: PIER LENGTH (FT) PIER SHAPE LTTACK ANGLE L (SHAPE COEF.) L (ANGLE COEF.)	HY 6 125 1tb 11.0 2.0 1.0 5.0 3 0 1.00 0.10	DRAULIC V. 5 150 mcm 11.0 2.0 1.0 5.0 3 0 1.00 1.00	ARIABLES 4 175 rfp 5.8 1.5 1.0 5.0 3 0 1.00 0.11	USED IN C 3 200 rfp 5.4 1.5 1.0 5.0 3 0 1.00 0.11	2 225 rfp 5.2 1.5 1.0 5.0 3 0 1.00 1.00 0.11	
PIER NUMBER PIER STATION (FT) COCATION OF PIER (1: DEPTH (FT) (1: VEL. (FPS) a: PIER WIDTH (FT) C: PIER LENGTH (FT) PIER SHAPE ATTACK ANGLE (1 (SHAPE COEF.) (2 (ANGLE COEF.)	HY 6 125 1tb 11.0 2.0 1.0 5.0 3 0 1.00 0.10	DRAULIC V. 5 150 mcm 11.0 2.0 1.0 5.0 3 0 1.00 0.10 0 SCOUR DE	ARIABLES 4 175 rfp 5.8 1.5 1.0 5.0 3 0 1.00 0.11 EPTHS USIN	USED IN C 3 200 rfp 5.4 1.5 1.0 5.0 3 0 1.00 0.11	2 225 rfp 5.2 1.5 1.0 5.0 3 0 1.00 1.00 0.11	

computed CSU scour depth as recommended in HEC 18

CONTRACTION SCOUR COMPUTATIONS

FOR

BIG BLACK CREEK AT SC 145 STRUCTURE # 134014500200 100-YEAR SCOUR, WJS, scour.1, 10-6-1994

100-1EAR SCOOK,		, scour.1, 10-6-	1334 ============
LEGE OVERDRAN	T.T	DDIDGD ODDITIO	
CLEAR-WATER CONTRAC		BRIDGE OPENING	ANT C
OHER WATER CONTRAC	LION	SCOOK COMPUTATION	ONO
DISCHARGE IN CONTRACTED SECTION (CFS)			
WIDTH OF CONTRACTED SECTION (FT)		105.0	
MEDIAN GRAIN SIZE (FT)	=	0.0007	
COMPUTED DEPTH OF CONTRACTED SECTION (FT)	=	5.9	•
AVERAGE FLOOD PLAIN DEPTH (FT)	-		
AVERAGE FLOOD PLAIN DEPTH (FT) DEPTH OF CONTRACTION SCOUR (FT)	_	2.3	
RIGHT OVERBAN	K TN	BRIDGE OPENING	
CLEAR-WATER CONTRAC			ons
DISCUIRCE IN COMPRISING CONTRACTOR (CO.C.)		- 4 -	
DISCHARGE IN CONTRACTED SECTION (CFS)		545.	
WIDTH OF CONTRACTED SECTION (FT) MEDIAN GRAIN SIZE (FT)		70.0	
MEDIAN GRAIN SIZE (FT)	-	0.0007	
COMPUTED DEPTH OF CONTRACTED SECTION (FT)	=	6.0	
AVERAGE FLOOD PLAIN DEPTH (FT)	=	4.8	
DEPTH OF CONTRACTION SCOUR (FT)	=	1.2	-
MAT.	N 011	NAMES DOSDOM ODEN	17370
· · · · · · · · · · · · · · · · · · ·		ANNEL BRIDGE OPEN RACTION SCOUR COM	
Omntr Martin	001111	WIGHTON DOODIN COL	# OIRIIOND
			•
DISCHARGE IN CONTRACTED SECTION (CFS)		537.	
		29.0	
MEDIAN GRAIN SIZE (FT)	=	0.0020	
COMPUTED DEPTH OF CONTRACTED SECTION (FT)	_	9.3	•
AVERAGE FLOOD PLAIN DEPTH (FT)	=	10.2	
DEPTH OF CONTRACTION SCOUR (FT)	=	-0.9	•
· •			
		0	

PIER SCOUR COMPUTATIONS

FOR

BIG BLACK CREEK AT SC 145 STRUCTURE # 134014500200 500-YEAR SCOUR, WJS, scour.5, 10-6-1994

	HYDRA	ULIC VARI	ABLES USE	D IN CSU I	EQUATION
PIER NUMBER	10	9	8	7	
PIER STATION (FT)	25	50	75	100	
LOCATION OF PIER	lfp	lfp	lfp		
Y1: DEPTH (FT)		6.5			
V1: VEL. (FPS)		1.8			
a: PIER WIDTH (FT)					
L: PIER LENGTH (FT)					
PIER SHAPE	3	3	3	3	
ATTACK ANGLE	Ō	Õ	ő	Ö	
K1 (SHAPE COEF.)	1.00	1.00	-		
K2 (ANGLE COEF.)	1.00	1.00			
FROUDE NO.	0.13	0.12			
	COMPUTE	SCOUR D	EPTHS USI	NG CSU EQ	UATION
SCOUR DEPTH (FT)	1.53	1.56	1.54	1.55	
	1 (0	1 71	1.70	1.71	
MAX SCOUR DEPTH (FT)	1.08			======= <u>==</u>	
MAX SCOUR DEPTH (FT)					·
MAX SCOUR DEPTH (FT)					SU EQUATION
PIER NUMBER					SU EQUATION
PIER NUMBER	нх	DRAULIC V	ARIABLES	USED IN C	
PIER NUMBER PIER STATION (FT)	6 125 1tb	DRAULIC V	ARIABLES	USED IN C	2 225
PIER NUMBER PIER STATION (FT) LOCATION OF PIER (1: DEPTH (FT)	6 125 1tb	DRAULIC V 5 150 mcm	ARIABLES 4 175 rfp	USED IN C	2 225 rfp
PIER NUMBER PIER STATION (FT) LOCATION OF PIER (1: DEPTH (FT)	6 125 1tb 11.8	DRAULIC V. 5 150 mcm 11.8 2.3	4 175 rfp 6.6	USED IN C 3 200 rfp 6.2	2 225 rfp 5.9
PIER NUMBER PIER STATION (FT) LOCATION OF PIER V1: DEPTH (FT) V1: VEL. (FPS)	6 125 1tb 11.8	DRAULIC V. 5 150 mcm 11.8 2.3	4 175 rfp 6.6	USED IN C 3 200 rfp 6.2 1.7	2 225 rfp 5.9 1.7
PIER NUMBER PIER STATION (FT) LOCATION OF PIER V1: DEPTH (FT) V1: VEL. (FPS) 1: PIER WIDTH (FT)	6 125 1tb 11.8 2.3	DRAULIC V 5 150 mcm 11.8 2.3 1.0	ARIABLES 4 175 rfp 6.6 1.7 1.0	USED IN C 3 200 rfp 6.2 1.7 1.0	2 225 rfp 5.9 1.7 1.0
PIER NUMBER PIER STATION (FT) LOCATION OF PIER (1: DEPTH (FT) (1: VEL. (FPS) a: PIER WIDTH (FT) L: PIER LENGTH (FT)	6 125 1tb 11.8 2.3 1.0 5.0	DRAULIC V. 5 150 mcm 11.8 2.3 1.0 5.0	ARIABLES 4 175 rfp 6.6 1.7 1.0 5.0	USED IN C 3 200 rfp 6.2 1.7 1.0 5.0	2 225 rfp 5.9 1.7 1.0 5.0
PIER NUMBER PIER STATION (FT) COCATION OF PIER (1: DEPTH (FT) (1: VEL. (FPS) A: PIER WIDTH (FT) C: PIER LENGTH (FT)	6 125 1tb 11.8 2.3 1.0 5.0	DRAULIC V. 5 150 mcm 11.8 2.3 1.0 5.0 3	ARIABLES 4 175 rfp 6.6 1.7 1.0 5.0 3	USED IN C 3 200 rfp 6.2 1.7 1.0 5.0 3	2 225 rfp 5.9 1.7 1.0 5.0
PIER NUMBER PIER STATION (FT) COCATION OF PIER (1: DEPTH (FT) (71: VEL. (FPS) A: PIER WIDTH (FT) C: PIER LENGTH (FT) PIER SHAPE ATTACK ANGLE	6 125 1tb 11.8 2.3 1.0 5.0 3	DRAULIC V. 5 150 mcm 11.8 2.3 1.0 5.0 3	ARIABLES 4 175 rfp 6.6 1.7 1.0 5.0 3 0	USED IN C 3 200 rfp 6.2 1.7 1.0 5.0 3	2 225 rfp 5.9 1.7 1.0 5.0 3
PIER NUMBER PIER STATION (FT) COCATION OF PIER (1: DEPTH (FT) (1: VEL. (FPS) A: PIER WIDTH (FT) C: PIER LENGTH (FT) PIER SHAPE ATTACK ANGLE (1 (SHAPE COEF.)	6 125 1tb 11.8 2.3 1.0 5.0 3 0	DRAULIC V. 5 150 mcm 11.8 2.3 1.0 5.0 3 0 1.00	ARIABLES 4 175 rfp 6.6 1.7 1.0 5.0 3 0 1.00	USED IN C 3 200 rfp 6.2 1.7 1.0 5.0 3 0 1.00	2 225 rfp 5.9 1.7 1.0 5.0 3 0
PIER NUMBER PIER STATION (FT) LOCATION OF PIER V1: DEPTH (FT) V1: VEL. (FPS) A: PIER WIDTH (FT) L: PIER LENGTH (FT) PIER SHAPE ATTACK ANGLE V1 (SHAPE COEF.) V2 (ANGLE COEF.)	6 125 1tb 11.8 2.3 1.0 5.0 3 0	DRAULIC V. 5 150 mcm 11.8 2.3 1.0 5.0 3 0 1.00 1.00	ARIABLES 4 175 rfp 6.6 1.7 1.0 5.0 3 0 1.00 1.00	USED IN C: 3 200 rfp 6.2 1.7 1.0 5.0 3 0 1.00 1.00	2 225 rfp 5.9 1.7 1.0 5.0 3 0 1.00
PIER NUMBER PIER STATION (FT) LOCATION OF PIER V1: DEPTH (FT) V1: VEL. (FPS) A: PIER WIDTH (FT) A: PIER LENGTH (FT) PIER SHAPE LTTACK ANGLE K1 (SHAPE COEF.) K2 (ANGLE COEF.)	HY 6 125 1tb 11.8 2.3 1.0 5.0 3 0 1.00 0.12	DRAULIC V. 5 150 mcm 11.8 2.3 1.0 5.0 3 0 1.00 0.12	ARIABLES 4 175 rfp 6.6 1.7 1.0 5.0 3 0 1.00 1.00 0.12	USED IN C: 3 200 rfp 6.2 1.7 1.0 5.0 3 0 1.00 1.00	2 225 rfp 5.9 1.7 1.0 5.0 3 0 1.00 1.00 0.12
PIER NUMBER PIER STATION (FT) LOCATION OF PIER V1: DEPTH (FT) V1: VEL. (FPS) A: PIER WIDTH (FT) L: PIER LENGTH (FT) PIER SHAPE ATTACK ANGLE K1 (SHAPE COEF.)	HY 6 125 1tb 11.8 2.3 1.0 5.0 3 0 1.00 0.12	DRAULIC V. 5 150 mcm 11.8 2.3 1.0 5.0 3 0 1.00 0.12 0 SCOUR DE	ARIABLES 4 175 rfp 6.6 1.7 1.0 5.0 3 0 1.00 1.00 0.12	USED IN C: 3 200 rfp 6.2 1.7 1.0 5.0 3 0 1.00 1.00 0.12	2 225 rfp 5.9 1.7 1.0 5.0 3 0 1.00 1.00 0.12

CONTRACTION SCOUR COMPUTATIONS

FOR

BIG BLACK CREEK AT SC 145 STRUCTURE # 134014500200 500-YEAR SCOUR, WJS, scour.5, 10-6-1994

LEFT	OVERBANK IN	BRIDGE OPENING
CLEAR-WATER	CONTRACTION	SCOUR COMPUTATIONS

DISCHARGE IN CONTRACTED SECTION (CFS)	=	1144.
WIDTH OF CONTRACTED SECTION (FT)	=	105.0
MEDIAN GRAIN SIZE (FT)	=	0.0007
COMPUTED DEPTH OF CONTRACTED SECTION (FT)	=	8.0
AVERAGE FLOOD DIAIN DEPTH (ET)		13

DEPTH OF CONTRACTION SCOUR (FT)

RIGHT OVERBANK IN BRIDGE OPENING CLEAR-WATER CONTRACTION SCOUR COMPUTATIONS

DISCHARGE IN CONTRACTED SECTION (CFS)	=	769.
WIDTH OF CONTRACTED SECTION (FT)	=	70.0
MEDIAN GRAIN SIZE (FT)	=	0.0007
COMPUTED DEPTH OF CONTRACTED SECTION (FT)	=	8.0
AVERAGE FLOOD PLAIN DEPTH (FT)	=	5.6
DEPTH OF CONTRACTION SCOUR (FT)	=	2.4

MAIN CHANNEL BRIDGE OPENING CLEAR-WATER CONTRACTION SCOUR COMPUTATIONS

· · · · · · · ·	=	
COMPUTED DEPTH OF CONTRACTED SECTION (FT) AVERAGE FLOOD PLAIN DEPTH (FT) DEPTH OF CONTRACTION SCOUR (FT)	=======================================	11.4 11.0 0.4

	П

United States Department of the Interior

GEOLOGICAL SURVEY

Water Resources Division Stephenson Center, Suite 129 720 Gracern Road Columbia, SC 29210-7651

October 6, 1994

William H. Hulbert, P.E. Hydraulic Engineer South Carolina Department of Transportation 955 Park Street Columbia, South Carolina 29202

Dear Mr. Hulbert:

We are pleased to transmit another report of the Level II Bridge Scour Program titled, "Level II bridge scour analysis for structure 134014500200 on Route SC 145, crossing Big Black Creek in Chesterfield County, South Carolina", by Whitney J. Stringfield and Toby D. Feaster. The technical aspects of the report have been reviewed by the South Carolina District Surface-Water Specialist, and the report has been approved by the South Carolina District Reports Specialist.

If you have any questions concerning this report, please contact me (750-6131) or Toby Feaster (750-6103) and we will be glad to assist you in any way possible.

Sincerely,

Whitney J. Stringfield

Whitney J. Stungfuld

Hydrologist

Enclosure

v*

SINDEX OF SHEETS

SHEET No. 1 TITLE PAGE
2-3 PIRN & PROFILE
4 251 COMBINATION BRIDGE - STR. 581+24.50 TO 585+75.50

STATE OF SOUTH CAROLINA

STATE HIGHWAY DEPARTMENT

PLAN AND PROFILE OF PROPOSED STATE HIGHWAY

STATE PROJECT

CHESTERFIELD COUNTY

BRIDGE MOVER BLACK CREEK SEED

SCALES, PLAN AND PROFILE I INCHA 100 FEET HORIZONTAL, I INCHA 10 FEET VERTICAL

			•			•
SUMMAR	Y OF QUE	NTITIE	FS FOR 25	T'COMBIN	ATION BR	NDGE
CLASS A CONCRETE	REINFORCING	STEEL	ST.=UCT. STEEL	HRRDWRRE	TRTD LUMBER	TRID PUES
: c. X	LBS.		<i>LB5</i> .	LB5.	M. B.M.	4.7.

CONVENTIO	MAL CICNE
ate Line	Trolley Poles
aunty Line	
ty or Town Limits	Telephone or Telegraph Poles
operty Line	Marsh
	Trees @ @ @
Izining Wall	Brush 0 0 0 0 0
Jating Road	Stumps
and R.O.W. Lines of	Buildings
opesed Road.	Bridge
ilroad	Concrete Box Culvert >
	Pipe Culvert

OTHER ROADS

14 S. C. CHESTERTIELD 410-8 95

	•			-	
	,				
			•		

F	2	0 10	0	10 · 20	25 20	5cale I inch 5 feet 0 0 10 20 25 20 10 0			0 0	FED AND INCU	
	변경 변	Bent Pile Length	PILE RECORD b. Hammer J. S. Oras Cut-off Not Electric 13 Selection Conference 13 Selection Conference 14 Selection Conference 15 Selection Conference 16 Selection Conference 16 Selection Conference 17 Selection Conference 18 Selection Con	Elivery Constraining Penilset	[25][[[6]][[6]][[6]][[6]][[6]][[6]][[6]]			POURING RECORD :		[발문] 왕이 된 그 부모를 받았다.	
		三世 三世 三世 三世 三世 三世 三世 三世		1002年 日外の 日本の 日本の						역 전 등학자의 등등 학교 등 경기 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등	
.			99 226 01 272 99 29 29 3 99 29 29 3 90 29 29 3 90 20 20 6 77 50	1					크를 보통 교육으로 등 경기 교육학 기계 전의 그는 전에 가는 등 기계를 보고 한다. 제공 현대 등 다른 그 등 이 국가 인원 등 등 등	#보 보고 5명이 다음하다고 5명 보니. #보 설명 환경 16명 급하다고 5명 등 # 16명 급명 급하 # 16명 등 # 16명 2명 2명 16명 보다 16명 등 # 16명 급하급명 유한 16명 환경 급하	
			9.5 22.5	- 6 0 5 4 - 1 / 7 / 5 - 1 - / 3 - 1 -			Torac			### ### ### ### ### ### ### ### ### ##	
							DEMOS (-10)	30.627	03 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m	######################################	
					- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
· .			7.	등 등 등 등 기업	+ 등록한 회교 등 전 보내 등 하는 시간 는 로 하는 것이 되는 보내를 보니 한 시간 된다. 는 가 되는 내리를 하면 된 보다 이 시간 된다. 는 가 되는 내리를 하면 된 보고 있는 것이 되는 가 내려 되어 하는 등 보통 하는 시간 된다. 는 가 되는 사람들이 되었는데 되는 이 되었다. 로 한 기를 통한 다리는 것이 되는 시간 된 로 한 기를 통한 기를 된 것이 되는 기를 되는다. 로 한 기를 통한 기를 된 것이 되는 기를 되는다.			는 및 및 그 교육 및 프로 프로 및 및 및 로 등 및 및 및 및 및 및 및 및 및 및 및 및 및 및			
furface 1 stied by					등 보고 보는 보고 보고 보는 다 나 나 다 이 등 (라.) 1 등 보고 보고 보고 보고 말 경기 보고 보는 보고 말니. 당로 함드 보고 보고 보고 있는 그 다 된 등 (라.) 1 는 보고 보고 보고 보고 보고 보고 보고 보고 보고 1 보고 보고 보고 보고 보고 보고 보고 보고 보고 1 보고	44. (15년보다는 하는 17년 (17년 15년 15년 15년 15년 15년 15년 15년 15년 15년 15					
Section Plated by Checked by Section Hermal by Circle Light Section Se					(10 15 15 16 16 17 15 17 15 17 17 17 17 17 17 17 17 17 17 17 17 17	# (1945) 1-10 기계	# # # # # # # # # # # # # # # # # # #	설심 등 전 19 보다 19 보다 19 보다 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[- 1	STORE PROJECT 410-	
Transcreed and taked by	SC ASSESSMENT SC	1 <u>0</u> 9 2 3 3 5 5 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	o o	10 20	11 (기타리 기업(타) (11년 12년 12년 12년 12년 12년 12년 12년 12년 12년	TO TO 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 BERETHERE AND TO BE TO BE THE THE TO BE THE THE THE THE THE THE THE THE THE TH	80 20 12년 1일 12년 1월 2일 12년	(19 1년 1년 - 1년	M. Bee and Chester	